High density fluorocarbon etching of silicon in an inductively coupled plasma: Mechanism of etching through a thick steady state fluorocarbon layer

نویسندگان

  • T. E. F. M. Standaert
  • M. Schaepkens
  • N. R. Rueger
  • P. G. M. Sebel
  • G. S. Oehrlein
  • J. M. Cook
چکیده

For various fluorocarbon processing chemistries in an inductively coupled plasma reactor, we have observed relatively thick ~2–7 nm! fluorocarbon layers that exist on the surface during steady state etching of silicon. In steady state, the etch rate and the surface modifications of silicon do not change as a function of time. The surface modifications were characterized by in situ ellipsometry and x-ray photoelectron spectroscopy. The contribution of direct ion impact on the silicon substrate to the etching mechanism is reduced with increasing fluorocarbon layer thickness. Therefore, we consider that the silicon etch rate is controlled by a neutral etchant flux through the layer. Our experimental data show, however, that ions play an import role in the transport of silicon etching precursors through the layer. A model is developed that describes the etch kinetics through a fluorocarbon layer based on a fluorine diffusion transport mechanism. The model is consistent with the data when one or two of the following roles of the ions on the etching process are assumed. The first role is an enhancement in the diffusivity of fluorine atoms through the fluorocarbon layer and an enhancement in the reaction probability of fluorine in the fluorocarbon layer. In this case the fluorine is assumed to originate from the gas phase. The second role includes ion fragmentation and dissociation of the fluorocarbon surface molecules. © 1998 American Vacuum Society. @S0734-2101~98!02201-5#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective etching of SiO2 over polycrystalline silicon using CHF3 in an inductively coupled plasma reactor

Selective etching of SiO2 over polycrystalline silicon has been studied using CHF3 in an inductively coupled plasma reactor ~ICP!. Inductive powers between 200 and 1400 W, as well as pressures of 6, 10, and 20 mTorr were used in this study of the etch rate and selectivity behaviors for silicon dioxide, silicon, and passively deposited fluorocarbon films. Using in situ ellipsometry, the etch rat...

متن کامل

Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor

It has been found that in the etching of SiO2 using CHF3 in an inductively coupled plasma reactor of the planarized coil design, a thin steady state fluorocarbon film can play an important role in determining the rate of etching. This etching is encountered as the amount of bias power used in the SiO2 etching process is increased, and a transition from fluorocarbon film growth on the SiO2 to an...

متن کامل

Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism

The mechanisms underlying selective etching of a SiO2 layer over a Si or Si3N4 underlayer, a process of vital importance to modern integrated circuit fabrication technology, has been studied. Selective etching of SiO2-to-Si3N4 in various inductively coupled fluorocarbon plasmas (CHF3 , C2F6/C3F6 , and C3F6/H2) was performed, and the results compared to selective SiO2-to-Si etching. A fluorocarb...

متن کامل

Selective SiO2-to-Si3N4 etching in inductively coupled fluorocarbon plasmas: Angular dependence of SiO2 and Si3N4 etching rates

In the fabrication of microstructures in SiO2 , etch selectivity of SiO2 to masking, etch stop, and underlayer materials need to be maintained at corners and inclined surfaces. The angular dependence of the SiO2-to-Si3N4 etch selectivity mechanism in a high density fluorocarbon plasma has been studied using V-groove structures. The SiO2 etch rate on 54.7° inclined surfaces is lower than on flat...

متن کامل

Influence of reactor wall conditions on etch processes in inductively coupled fluorocarbon plasmas

The influence of reactor wall conditions on the characteristics of high density fluorocarbon plasma etch processes has been studied. Results obtained during the etching of oxide, nitride, and silicon in an inductively coupled plasma source fed with various feedgases, such as CHF3 , C3F6 , and C3F6/H2 , indicate that the reactor wall temperature is an important parameter in the etch process. Ade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997